

Valuation of Early- Stage Entities December 12, 2022

Bocconi University

Mark L. Zyla CPA/ABV, CFA, ASA

Zyla Valuation Advisors LLC Atlanta, Georgia

- □ Overview of Characteristics of Early-Stage Entities ("ESE's")
- □ Challenges in the valuation of ESE's.
- □ Traditional Valuation Methodologies Applied to ESE's.
- □ Other Valuation Methodologies.
- Case Study in Allocation of Value to Various Equity Classes Using the Option Pricing Method.

Characteristics of Early Stage Entities

- High growth potential
- □ Early operating losses and negative cash flow.
- □ High level of expenses compared to revenue.
- □ Comprised primarily of intangible assets.
 - Technology
 - Software
 - Management Team
- □ Complex capital structure
 - Preferred Rounds
 - Common Stock
 - Options and Warrants
- High Risk /High return potential

Puca, Antonella Early Stage Valuation (Wiley Finance: 2020)

ESE's Growth Funded in Stages

□ Stage 1: Seed funding/ Angel investors

- Friends and family investors
- Little or no revenue
- Rounds are typically smaller investments
- □ Stage 2 Early Venture Capital investors
 - Formal management team
 - Commercial Operations and R&D
- Stage 3: Additional Venture Capital investments
 - High revenue growth
 - Funding for operations and marketing
- □ Stage 4: Private Equity
 - Later stage rounds of financing
 - Complex capital structures.
- □ Stage 5: Exit either through IPO or acquisition

Traditional Valuation Approaches As Applied to ESE's

Income Approach

- Typically used valuation of later stage investments.
- Scenario analysis may be useful.
- Discount rate selection is key to account for risk.

Market Approach

- Subsequent rounds can be calibrated to initial transactions.
- Guideline companies can provide data on volatility for option pricing models
- □ Asset Approach
 - Asset Accumulation Method
 - Techniques to measure the value of intangible assets.

Other Valuation Methodologies

Current Value Method

- Allocates value to each class of security without regard to the potential future growth in company value.
- Option Pricing Method (OPM)
 - Allocates value to each class of security by treating securities as contingent claims (options) on the company's future value.
- Probability Weighted Expected Return Method (PWERM)
 - Allocates value to each class of security by running future values through the company's "waterfall" at the time of each expected outcome and discounting to present value.
- Hybrid Method
 - Allocates value to each class of security through a combination of the OPM and the PWERM.

AICPA Accounting and Valuation Guide: Valuation of Portfolio Company Investments of Venture Capital and Private Equity Funds and Other Investment Companies (2019)

Case Study – Allocation of Enterprise Value of an Early-Stage Company in a Complex Capital Structure Using the Option Pricing Method.

Option Characteristics - A Brief Refresher

Stock options have the following features that impact their valuation:

- <u>Contractual features</u>: exercise price, maximum term, and possibly a market or performance condition
- <u>Market features</u>: stock price (if publicly traded), risk-free interest rate
- <u>Estimated features</u>: stock price (if closely-held), dividends, volatility, expected term

OPM – Steps in Application

The following steps are applied in the Option Pricing Method:

- 1. Select a method for calculating the enterprise value
- 2. Analyze equity rights for each class to establish breakpoints
- 3. Select the appropriate option-pricing model
- 4. Select the key valuation inputs
- 5. Allocate the value to the various classes of stock

Source: ASA's CAVS Course, Valuations for ASC 718 (SFAS 123R) and IRC 409A by Neil J. Beaton, Robert E. Duffy and Mark L. Zyla

OPM Example – Facts

- The FinPay Enterprise is a software design firm which produces mobile pay app for the financial services industry.
- The company was founded in late 2019 and now has more than 70 banking customers served out of a Milan-based location.
- The enterprise is experiencing declining operating losses and was near break-even.
- No long-term business plan forecast had been prepared.
- However, a three-year budget is available.
- FinPay is seeking additional investment but has not had any discussions with investment bankers or private equity investors regarding potential exit valuations.
- Management expects to have an exit event (preferably an IPO) within five years.

Page | 10

OPM – Critical Assumptions

- Enterprise value is €11.8M, assumes no debt
- Risk-free rate is 2.69% Five year Italian Gov't Bond.
- Volatility (estimated at 40% based on guideline companies for our example)
- 5-year term reflects expected timing of liquidity event and incorporates:
 - Investor expectations and profile
 - Market industry observations
 - Product development milestones
 - Funding requirements
 - Revenue run rates

OPM Example – Facts

The FinPay is currently capitalized as follows:

	Shares	% of Total
Series A Preferred Stock	7,000,000	70%
Common	3,000,000	30%
Total	10,000,000	100%
	10,000,000	10070

Enterprise Value

- Enterprise value can be estimated based on traditional cost, market, and income approaches.
- The latest round of financing can represent a market approach indication of value.
- The pre-money value from the **term sheet** plus the current round **can be useful** as enterprise value.
- However, there is an enterprise value that supports the **latest preferred round price.**

OPM Example – Facts

- The preferred stock was issued in January 2021 at €1.50 per share and has the following allocation characteristics:
 - <u>Conversion</u> each share of preferred is convertible into one share of common.
 - Automatic Conversion upon IPO of at least €5.00 per share.
 - Liquidation preference upon a merger/sale/IPO, first to preferred shareholders up to €1.50 per share. Preferred and common participate in remaining proceeds on a fully diluted basis.
 - <u>Dividends</u> preferred shareholders have priority in dividends, but do not accumulate.

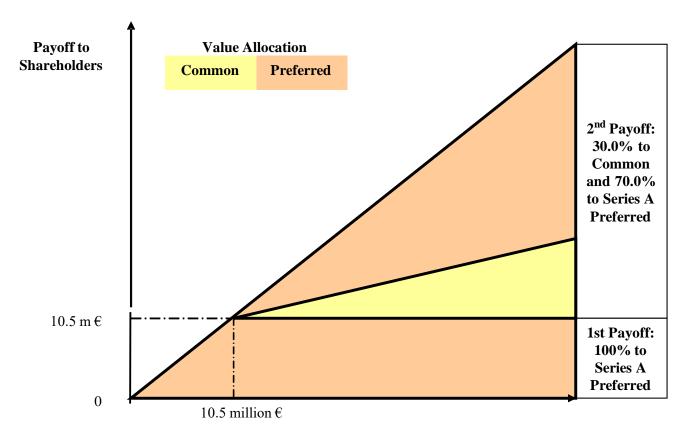
Selecting the Appropriate Model

- The modified Black-Scholes-Merton model, which estimates the value of options features using a closed-form equation.
- The lattice (binomial, trinomial, etc.) and Monte Carlo approaches, which estimate the value of employee stock options using a variety of numerical methods.

Selecting the Inputs

- Key questions and misconceptions focus on the following topics:
 - > Choice of model
 - > Estimation of model parameters (assumptions, inputs)
 - Verification of model and parameters, ex post
 - > General misconceptions and errors

Breakpoints


Breakpoints are used to separate the incremental returns to each class of equity. Breakpoints are used as exercise prices in the BSOPM and include:

- Liquidation preferences
- Return caps
- Conversion options
- Automatic conversion, IPO outcome ranges
- IRR hurdle thresholds

Breakpoints Chart

Payoff to Common and Preferred Shareholders under a Sale/Merger Liquidity Event

Equity Value

Breakpoints and Pay-offs

As shown in this example, there are three potential pay-offs which are shared by the common and preferred stockholders, as follows:

Breakpoint Type			Breakpoint		Allocation
Liquidation Pref.	€	0	to	€ 10,500,000	All to Series A
Participation	€ 10,5	00,000	to	€ 50,000,000	Pro rata Series A and Common
Conversion	€ 50,0	00,000	to	Infinity	As Converted to Common

BSM - First Inflection

Business Enterprise Value (1)	
Less: PV of Dividends	
Current Price	11,800,000€
Exercise Price	10,500,000 €
Years to Expiration	5.0027
Days to Expiration	1,826
Valuation Date	12/31/2021
Expiration Date (2)	12/31/2026
Volatility (3)	40.00%
Risk Free Rate (4)	2.69%
d1 (5)	0.7282
N(d1)	0.7668
N(-d1) or [1-N(d1)]	0.2332
d2 (5)	(0.1665)
N(d2)	0.4339
N(-d2) or [1-N(d2)]	0.5661
Quarterly Dividend Rate	0.00 €
Dividend Yield	0.00%

Call Value (6)

5,065,466€

BSM - Second Inflection

Business Enterprise Value (1)	11,800,000€
Less: PV of Dividends	
Current Price	11,800,000 €
Exercise Price	50,000,000 €
Years to Expiration	5.0027
Days to Expiration	1,826
Valuation Date	12/31/2021
Expiration Date (2)	12/31/2026
Volatility (3)	40.00%
Risk Free Rate (4)	2.69%
d1 (5)	(1.0162)
N(d1)	0.1548
N(-d1) or [1-N(d1)]	0.8452
d2 (5)	(1.9108)
N(d2)	0.0280
N(-d2) or [1-N(d2)]	0.9720
Quarterly Dividend Rate	\$ -
Dividend Yield	0.00%

Call Value (6)

602,069€

Inflection Footnotes

- (1) Based on income approach.
- (2) Assumes a five year time period to liquidity event.
- (3) Based on the average stock price volatility of the comparable companies
- (4) Based on the 5-year Italian Treasury Bond as of December 31, 2021,
- (5) N(d) = Cumulative density function (area under the normal curve) and d₁ and d₂ is as follows:

 $d_1 = \frac{\ln (\text{Market price/Exercise price}) + ((r + ((Volatility^2/2)))* years to expiration}{Volatility*(years to expiration)^{1/2}}$

 $d_2 = d_1$ - ((volatility)*(years to expiration)^{1/2})

(6) Call Price = Market Price* $N(d_1)$ - [Exercise Price* $e^{-r(time \ to \ expiration)}N(d_2)$]

Notes: Definitions

- e = Base of natural logarithms (2.71828).
- r = Current interest rate on risk free investment or risk free rate.

Option Values at Breakpoints

A BSOPM model is run for each breakpoint in order to establish the pay-off amounts with the following option values.

Breakpoint	Exercise Price	Option Value	Incremental Value	
Liquidation Pref.	€ 0	€ 11,800,000		
Participation	€ 10,500,000	€ 5,065,466	€ 6,734,534	
Conversion	€ 50,000,000	€ 602,069	€ 4,463,397	

Source: ASA's CAVS Course, Valuations for ASC 718 (SFAS 123R) and IRC 409A by Neil J. Beaton, Robert E. Duffy and Mark L. Zyla

BSM Pay-off Outputs

The incremental values of each option are used to develop pay-offs to each equity class.

	Pay-off 1	Pay-off 2	Pay-off 3	Total Value	Per Share
Series A	€ 6,734,534	€ 3,124,378	€421,448	€ 10,280,360	€ 1.47
Common	<u> </u>	€ 1,339,019	€180,621	€ 1,519,640	€ 0.51
Total	€6,734,534	€ 4,463,397	€602,069	€11,800,000	€ 1.18

The common share price is equal to 35% of the preferred value, does this seem reasonable?

Points to Consider for OPM

- Are future equity values log-normally distributed? If not, why is option method being used?
- How is future funding considered?
- Is volatility appropriate? Public Co. may not match private common.
- Does implied value of recent preferred match actual?
- Stage of development
- Exit event timing, type, potential values
- Future dilution (future financing rounds, option grants)
- Recent financing round reference price
- Adjustments for lack of control and lack of marketability

Source: ASA's CAVS Course, Valuations for ASC 718 (SFAS 123R) and IRC 409A by Neil J. Beaton, Robert E. Duffy and Mark L. Zyla

Mark L. Zyla CPA/ABV, CFA, ASA

- Mark Zyla is Managing Director of Zyla Valuation Advisors LLC, an Atlanta, Georgia based valuation and dispute analysis consultancy firm.
- Chairman, Standards Review Board, International Valuation Standards Council ("IVSC")
- Former Member of the ASA's Business Valuation Committee and formerly a member of the AICPA's FVS Executive Committee.
- Author of Fair Value Measurements: Practical Guidance and Implementation 3rd ed. published by John Wiley & Sons (2020) and co-author with Ervin L. Black of Accounting for Goodwill and Other Intangible Assets, also published by Wiley (2018)
- □ Member of the working groups which developed the AICPA's *Testing Goodwill for Impairment-Accounting and Valuation Guide* and The Appraisal Foundation's *The Identification of Contributory Assets and Calculation of Economic Rents.*
- Co-author of four monographs on various aspects of fair value measurements published by BNA Bloomberg.
- □ Inducted into the AICPA's BV Hall of Fame in 2013
- □ Member of the Master of Science in Finance Advisory Council at the University of Texas at Austin.

